Solve:
\(3x^{2}\ +\ 16x = −5\)
Write the equation in standard form.
\(3x^{2}\ +\ 16\ +\ 5 = 0\)
Solve using the quadratic formula.
\(a = 3, b = 16, c = 5\)
\(x = \frac{−b\ \pm\ \sqrt{b^{2}\ −\ 4ac}}{2a}\)
\(= \frac{−16\ \pm\ \sqrt{16^{2}\ −\ 4(3)(5)}}{2(3)}\)
\(= \frac{−16\ \pm\ \sqrt{256\ −\ 60}}{6}\)
\(= \frac{16\ \pm\ \sqrt{196}}{6}\)
\(= \frac{16\ \pm\ 14}{6}\)
\(x= \frac{−16\ +\ 14}{6}=−\frac{1}{3}\ or\ x = \frac{−16\ −\ 14}{6} = −5\)
The solutions are –5 and \(−\frac{1}{3}\)